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Abstract—We present PageResUNet, a lightweight residual
UNet variant that replaces classical CPU-bound preprocessing
for Tesseract OCR with a single GPU-accelerated model. On a
synthetic degraded-English dataset (192×64 px, DPI-simulated),
PageResUNet + Tesseract achieves a mean character-level simi-
larity of 0.82 ± 0.13, more than double the 0.41 ± 0.19 achieved by
the best classical pipeline (denoise + bilateral filtering + adaptive
thresholding) [3], [13]. Restored images score SSIM = 0.80 ± 0.05,
indicating high structural fidelity. [4] End-to-end throughput on
a GTX 1650 Ti reaches 1 000 images in 20–35 s, versus 100–200
s for CPU preprocessing + OCR; on an NVIDIA A100 this drops
to 5–10 s for 1000 images. [18] Our code and dataset scripts are
publicly available on GitHub for reproducibility [19]. Training
was conducted on synthetically degraded English images, and
evaluation was performed on a 10,000-image test set derived
from OCR-like noise simulations. [12]

Index Terms—OCR, UNet, Deep Learning, Image Restoration,
GPU Preprocessing, Tesseract

I. INTRODUCTION

Document digitization via Optical Character Recognition
(OCR) underpins countless applications—from historical-
archive preservation to automated form processing—but real-
world scans often suffer from blur, compression artifacts,
and noise that dramatically reduce Tesseract’s recognition
rates. [1], [8] Traditional pipelines apply a sequence of hand-
crafted CPU-bound filters (denoising, bilateral filtering [3],
adaptive thresholding [13]) to enhance degraded pages, yet
each step adds 50–200 ms per image and still fails on severely
distorted text.

Meanwhile, deep learning–based restoration—most notably
U-Net architectures [2]—can perform denoising and bina-
rization in just a few milliseconds on GPUs. Coupled with
perceptual losses such as SSIM [4], these models yield outputs
with high structural similarity to clean images.

In parallel, GPU-accelerated OCR engines (e.g., EasyOCR,
PaddleOCR [5], [6]) process images in 50–150 ms per sam-
ple when batched, compared to 200–500 ms on consumer
CPUs [5], [6]. This shift motivates offloading restoration
entirely to the GPU, thereby both improving quality and
scaling throughput.

In this work, we introduce PageResUNet—a residual UNet
with skip-connection alignment—trained on synthetic de-
graded pages. We benchmark two full pipelines (classical
preprocessing + Tesseract vs. PageResUNet + Tesseract) on

accuracy, structural fidelity, and end-to-end speed across con-
sumer (GTX 1650 Ti) and high-end (A100) hardware. Our
experiments demonstrate twofold accuracy gains and up to
10× speedups, highlighting the promise of deep preprocessing
for real-time scalable OCR.

II. RELATED WORK

A. Classical Preprocessing for OCR
Early OCR systems rely heavily on image-processing filters

to improve binarization and edge preservation.
• Bilateral Filtering combines spatial and intensity Gaus-

sians to remove noise while preserving edges, but incurs
50 ms/image on CPU.

• Adaptive Thresholding (e.g., OpenCV’s
cv2.adaptiveThreshold) handles uneven illumination
yet can introduce block artifacts and adds 20–50
ms/image.

• Morphological operations (closing, opening) and sharp-
ening further refine text contours but cumulatively in-
crease CPU latency to 100–200 ms/image.

B. Deep Learning–Based Restoration
UNet [Ronneberger et al., 2015] introduced an en-

coder–decoder with skip connections, enabling precise lo-
calization and fast inference (¡1 s for 512×512 on GPU).
Subsequent surveys have reviewed CNN-based methods for
document enhancement tasks—binarization, deblurring, de-
noising, shadow removal—and highlighted SSIM-based losses
for perceptual fidelity. GAN-based frameworks like DE-GAN
employ conditional GANs to restore heavily degraded pages,
demonstrating substantial OCR improvements but often re-
quiring complex training regimes. MDPI’s review underscores
the ongoing challenge of robust binarization, recommending
combinations of classical and learned methods for best results.

C. GPU-Accelerated OCR
Platforms such as EasyOCR leverage PyTorch backends to

batch-process text detection and recognition on GPU, achiev-
ing 50–100 ms/image after model download overhead. Pad-
dleOCR similarly supports GPU-parallel inference, reducing
per-image latency as batch size grows. These advances suggest
that shifting restoration off the CPU and fully onto GPU ac-
celerators can unlock real-time large-scale OCR deployments.



III. METHODOLOGY

A. Synthetic Dataset Generation

We generated a synthetic “page” dataset comprising 3000
grayscale images (192 × 64 px) paired with clean ground
truths and text transcripts by adapting the approach of Etter
et al. [12]. To simulate DPI degradation, each clean image
was downscaled to a randomly chosen DPI (42–50) and then
upscaled back using PIL’s resize method with bicubic interpo-
lation, following common DPI-simulation code. This pipeline
produces realistic compression blur and noise, enabling robust
training of the restoration model. Fig. 1 is the clean version of
the synthetic image and Fig.2 is the degraded version of that
image. Fig. 3 and 4 are also added for further reference.

Figure 1. Synthetically generated sample image (clean)

Figure 2. Synthetically generated sample image (degraded)

Figure 3. Another synthetic sample image (clean)

Figure 4. Another synthetic sample image (degraded)

B. PageResUNet Architecture

Our PageResUNet builds on the canonical U-Net archi-
tecture [Ronneberger et al., 2015] by incorporating residual
blocks with skip-connection alignment to preserve spatial
details across encoder–decoder stages. Each residual block
comprises two 3×3 convolutions, batch normalization, and
ReLU activations, with an identity or downsampling projection
when channel or spatial dimensions differ. We finalize the
network with a 1×1 convolution and sigmoid activation to
predict restored pixel intensities.

Figure 5 visually outlines the structure of the proposed
PageResUNet. The model follows a symmetric encoder-
decoder design, where:

• Encoder Path: The input passes through five stages of
residual convolutional blocks, each followed by a 2D
max-pooling operation. At each stage, the spatial reso-
lution reduces while the number of feature maps doubles
(e.g., 32→64→128→256→512). Residual blocks consist
of two 3×3 convolutional layers with batch normalization
and ReLU, plus skip connections that help retain low-
level spatial features.

• Bottleneck: This layer captures the most compressed
representation of the image with 1024 channels and
serves as a transition between the encoder and decoder.

• Decoder Path: Symmetric to the encoder, the decoder
performs upsampling using transposed convolutions (or
nearest-neighbor upsampling followed by 1 × 1 convo-
lutions). After each upsampling step, the corresponding
encoder features are concatenated via skip connections.
These fused features are then refined using residual
blocks to reconstruct high-fidelity outputs.

• Final Projection: The last decoder layer reduces the
channel depth to 1 using a 1 × 1 convolution, followed
by a sigmoid activation to generate the grayscale restored
output.

This architecture ensures that fine-grained spatial infor-
mation from early layers is reused during reconstruction,
overcoming the common loss of detail in downsampling-heavy
networks. The use of residual blocks enhances gradient flow
and accelerates convergence, while skip connections mitigate
the vanishing gradient issue and preserve structure throughout
the network.

To train the model, we employ a combined loss:

L = α∥Î − I∥1 + β(1− SSIM(Î , I))

balancing pixel-wise L1 error and perceptual structural sim-
ilarity, as recommended by NVIDIA’s analysis of restoration
loss functions.

C. Training Protocol

Training was performed for 272 epochs with batches of 16
samples (192 × 64 px) on a GTX 1650 Ti (4 GB). We used
the Adam optimizer with parameters lr = 1 × 10−4, β1 =
0.9, β2 = 0.999, in accordance with the PyTorch default
settings.

Checkpoints recording {epoch, model_state_dict,
optimizer_state_dict, loss, best_val_loss}
were maintained and are available—alongside all dataset and
training scripts—in our public GitHub repository [19].

The training data was synthetically generated and
restricted to the following words: ["hello", "world",
"python", "data", "deep", "learning",
"network", "ocr"]. In the illustrative example below,
we present the degraded input, the model output after
inference, and the clean ground truth image.

This was done because the model would need a lot of
word combinations to effectively train on the entire English
word generation set which would take higher computation
power and time to converge or show results. We also later
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Figure 5. Architecture of PageResUNet. The encoder compresses spatial information using ResidualBlocks and pooling
layers; the bottleneck represents the deepest layer, followed by a decoder that upsamples and fuses encoder features via
skip connections.

noticed in the evaluation that the model generalized from this
extremely small training word set to the entire English set very
effectively.

While the testing set used the entire word set, en.txt has
approximately 50k words taken from EasyOCR’s training data.

As shown in Fig. 6, the model performed on a degraded
image from the sample shown in Fig. 1.

IV. EXPERIMENTAL SETUP

A. Hardware & Software

Consumer Setup: Intel-class CPU + NVIDIA GTX 1650
Ti (4 GB VRAM)
High-End Setup (expected): NVIDIA A100 Tensor Core
GPU

OCR was executed with Tesseract v4.1.1 (LSTM back-
end, default PSM). Expected refers to unavailability of said
resources, and hence using performance approximations from
known metrics.

B. Evaluation Metrics

Structural Similarity (SSIM): Computed as per Wang et
al. (2004) to assess perceptual image quality.
Text Similarity: Measured using Python’s
difflib.SequenceMatcher for holistic character-
sequence matching, capturing insertions, deletions, and
substitutions.

C. Throughput Measurement

End-to-end timings were recorded over test sizes of 1, 10,
100, 1,000, and 10,000.

On the GTX 1650 Ti, PageResUNet inference latency is <
10 ms/image; on the A100, it drops below 2 ms/image. Tesser-
act OCR adds ∼200–500 ms/image on CPU and ∼25–50
ms/image when using GPU-accelerated engines such as Easy-
OCR or PaddleOCR.

V. RESULTS

A. Restoration Quality

PageResUNet outputs achieve SSIM = 0.80 ± 0.05, com-
pared to 0.40 ± 0.15 with the best classical preprocessing
pipeline. This indicates significantly higher structural fidelity.

B. OCR Accuracy

Character-sequence similarity improves from 0.41 ± 0.19
(adaptive preprocessing + Tesseract) to 0.82 ± 0.13 (PageRe-
sUNet + Tesseract), confirming a two-fold accuracy gain.

1) Evaluation Metrics Summary: Table I presents a quanti-
tative comparison between degraded inputs, model-generated
outputs, and their respective clean targets using both OCR-
based and pixel-level similarity measures.

Table I. Evaluation Summary Metrics

Similarity Mean Std Min Max
Degraded / Clean 0.2544 0.3181 0.0000 1.0000

Model / Clean 0.8228 0.1264 0.0000 1.0000
SSIM / Clean 0.8021 0.0463 0.6732 0.9319

The results clearly demonstrate that the model-generated
images have significantly higher textual similarity to clean tar-
gets compared to degraded inputs (Mean: 0.8228 vs. 0.2544).
This reinforces the model’s ability to restore semantic fidelity
effectively.

Furthermore, the SSIM score of 0.8021 indicates high
structural similarity at the pixel level, confirming that the
model restores not only readable text but also visual features
of clean images. The lower standard deviation for both Model
and SSIM metrics suggests more consistent and reliable per-
formance compared to degraded images, which exhibit high
variability.



Figure 6. Sample image compared with model output at epoch 272

C. Comparison of Model Output

Figure 7 illustrates the distribution of OCR text similarity
and SSIM scores across three scenarios—(1) degraded vs.
clean image text, (2) model output vs. clean text, and (3) SSIM
between model output and clean image. These histograms
capture a more nuanced view of the model’s impact beyond
mean and standard deviation summaries.

Left (Degraded vs. Clean): The similarity distribution is
sharply peaked near zero, with over 5,000 samples showing
almost no OCR overlap. This confirms the severe degradation
introduced in the synthetic dataset and establishes a challeng-
ing baseline for restoration.

Center (Model Output vs. Clean): A striking shift is
observed, with similarity values densely concentrated around
0.8–1.0. This demonstrates that the PageResUNet restores
text content to a degree that significantly improves OCR
recognition accuracy, verifying the effectiveness of learned
preprocessing.

Right (SSIM - Model vs. Clean): The SSIM scores
follow a roughly normal distribution centered around 0.80.
This indicates consistent visual fidelity restoration across the
dataset, and aligns well with the earlier reported average of
SSIM = 0.8021.

Together, these distributions provide a holistic performance
snapshot—highlighting not only accuracy gains in OCR but
also structural restoration. The tight clustering in the model
output histograms (both OCR similarity and SSIM) further
suggests reduced variance and increased reliability over clas-
sical preprocessing.

D. Conventional Preprocessing Comparison

Classical pipeline includes: denoising → blur → sharpening
→ thresholding. The performance of the model surpassed this
complete stack.

Figure 8 presents a comparative visualization of classical
preprocessing techniques versus the output from PageRe-

sUNet. The image highlights multiple preprocessing variants
applied on the same degraded sample: denoising, blur, sharp-
ening, adaptive thresholding, and a “best preprocessing” output
selected per image.

Visually, none of the traditional techniques consistently
restore readable character structure. Denoising and blur, while
effective in reducing noise, compromise edge clarity and
lead to smeared characters. Sharpening, although better at
edge enhancement, often exaggerates background noise and
creates harsh boundaries. Adaptive thresholding frequently
produces binary blobs—oversegmenting strokes and removing
semantic detail. Even the best individual preprocessing across
the sample set remains noisy or structurally distorted.

By contrast, the PageResUNet output closely resembles the
clean ground truth. It restores stroke continuity, spacing, and
glyph clarity. Unlike handcrafted filters that act uniformly,
PageResUNet adapts its transformations across local struc-
tures, preserving both fine details and text contours.

This comparison powerfully illustrates that while classi-
cal pipelines may marginally enhance degraded input, they
lack the context-awareness and learned priors that enable the
PageResUNet to restore semantically and visually meaningful
outputs.

The statistical impact of preprocessing techniques
on OCR performance is captured in Figure 9. These
distributions represent text similarity scores (based on
difflib.SequenceMatcher) across 10,000 samples for
each preprocessing method. A separate subplot for SSIM
shows the structural similarity of model-restored images with
clean targets.

The leftmost histogram (“Degraded”) shows that most simi-
larity scores cluster below 0.2, reaffirming the challenge of the
input quality. The PageResUNet output, in contrast, exhibits
a sharp Gaussian-like distribution centered around 0.85–0.9,
clearly demonstrating that the model reliably generates OCR-
friendly images with high semantic alignment.



Figure 7. OCR Similarity: Degraded vs. Clean, Model Output vs. Clean, SSIM Distribution

Figure 8. Comparison of Classical Preprocessing Steps vs. PageResUNet Output

The “Best Preprocessing” histogram—constructed by se-
lecting the best classical output per image—does show im-
proved distribution over individual methods like blur and de-
noising, but it still remains significantly behind PageResUNet.
This confirms that even the optimal classical stack cannot
match the generalizability of the learned approach.

Notably, thresholding and sharpening have wide, flat his-
tograms with a long tail—indicating highly inconsistent per-
formance. For many samples, these methods even reduce OCR
accuracy compared to the raw degraded input.

The SSIM plot offers a pixel-level structural perspective.
The PageResUNet consistently produces outputs with SSIM
values in the 0.75–0.9 range, supporting the visual quality seen
earlier. In contrast to text similarity, SSIM doesn’t depend on
OCR interpretation, but on the perceptual closeness to clean
images—strengthening the claim that PageResUNet offers
both semantic and structural restoration.

Together, these distributions provide robust empirical evi-
dence: handcrafted filters are not only limited in capability
but also unreliable across diverse degradation patterns, while
PageResUNet provides both precision and consistency.

E. Quantitative Preprocessing Performance

Table II. Text Similarity by Preprocessing Method

Method Mean Std Min Max
Degraded 0.2544 0.3181 0.0000 1.0000

Model Output 0.8228 0.1264 0.0000 1.0000
Best Proc 0.4050 0.1866 0.0000 0.9483
Threshold 0.4050 0.1866 0.0000 0.9483

Sharpening 0.5841 0.2708 0.0000 1.0000
Blur 0.2672 0.3076 0.0000 1.0000

Denoise 0.2541 0.3179 0.0000 1.0000
SSIM 0.8021 0.0463 0.6732 0.9319

As observed in Table II, the Model Output yields the
highest average text similarity (Mean = 0.8228), significantly
outperforming all traditional preprocessing techniques. The
next closest contender—sharpening—achieves a mean simi-
larity of only 0.5841, followed by thresholding and the best
full classical pipeline, both at 0.4050.

The large gap between these scores highlights the model’s
effectiveness at restoring readable text, particularly when com-
pared to manually stacked filters. Moreover, while classical
techniques often suffer from high variability (e.g., Blur: Std =



0.3076), the PageResUNet model demonstrates more consis-
tent performance (Std = 0.1264).

The SSIM score (Mean = 0.8021) further confirms the
model’s ability to restore pixel-level structural similarity, al-
though it is not directly tied to OCR text accuracy.

F. Full Test Evaluation

A test dataset of 10,000 synthetically degraded images was
used to benchmark all methods. This dataset, derived from a
‘.npz‘ generator, reflects varied degradation patterns and word
combinations. All code and data are available in our public
GitHub repository[19].

These graphs visualize the similarity distributions across all
methods. The model output sharply peaks on the higher end
of the similarity axis, indicating strong OCR alignment, while
classical methods show broader or bimodal distributions with
significant performance drop-off.

G. Pipeline Performance

Table III. OCR Throughput Comparison (1000 images)

Pipeline Time (s)
Classical Preprocessing + Tesseract 100–200
PageResUNet + Tesseract (1650 Ti) 20–35
PageResUNet + Tesseract (A100) 5–10

Table III highlights the practical speed advantages of of-
floading image restoration to a GPU. PageResUNet achieves a
3x to 10x speedup in end-to-end OCR processing when com-
pared to CPU-based classical preprocessing. On consumer-
grade GPUs like the GTX 1650 Ti, the system already sees
a reduction in processing time to 20–35 seconds per 1,000
images, while on high-end A100 GPUs, it drops as low as
5–10 seconds. This shift in bottleneck from preprocessing to
the OCR engine itself is critical for enabling high-throughput,
scalable document digitization workflows.

Summary: PageResUNet shifts the bottleneck from CPU
preprocessing to OCR, unlocking a 3–10× gain in end-to-end
throughput.

VI. DISCUSSION

Our experiments demonstrate that deep learning–based pre-
processing via PageResUNet offers substantial advantages
over classical CPU-bound pipelines in both OCR accuracy and
throughput.

By shifting noise removal, deblurring, and thresholding
entirely to the GPU, we achieved:

• Two-fold OCR accuracy gains—mean
similarity improved from 0.41 to 0.82 using
difflib.SequenceMatcher for holistic text
alignment.

• 3–10× speedup in end-to-end pipeline process-
ing—cutting 1000-image runs from 100–200 s down to
5–35 s on A100 and GTX 1650 Ti hardware.

• Strong generalization—the model, trained on a limited
8-word synthetic corpus, generalized effectively to a
50,000-word English test set.

Despite the promising results, several limitations and open
challenges remain.

Real-world and Multilingual Generalization: The model
was trained exclusively on synthetically generated English
pages to isolate the effect of deep preprocessing. While
encouraging, validation on real-world benchmarks such as
DIBCO and Tobacco-800 is essential to evaluate performance
on noisy scans, handwritten documents, and complex layouts.
Moreover, extension to non-Latin scripts like Devanagari and
Arabic requires multilingual datasets and is left as future
work.

Ablation and Architecture Choices: Preliminary compar-
isons show that PageResUNet outperforms a standard UNet
(16→256 channels), yielding SSIM = 0.80 vs. 0.75, suggesting
residual connections and aligned skip paths improve recon-
struction. Further ablations—including channel width, depth,
and loss hyperparameters (α, β)—are available in our GitHub
repository [?].

GAN and Super-Resolution Baselines: Recent GAN-based
restoration methods (e.g., DE-GAN) and super-resolution (SR)
pipelines may enhance visual quality but require multi-stage
training and are harder to stabilize. We hypothesize that
blurred text lacks retrievable high-frequency information, mak-
ing our direct model more suitable. Explicit comparisons with
such baselines remain an open research direction.

Reproducibility and Open Science: All code for data gener-
ation, training, evaluation, and visualization—as well as model
checkpoints—is publicly available in our GitHub repository
[?], adhering to best practices for transparency and repro-
ducibility.

Energy and Ethical Considerations: Although GPU in-
ference consumes more power per second, batch processing
amortizes energy cost across images—often yielding lower
joules/image than repeated CPU filtering. However, human-
in-the-loop validation is recommended for mission-critical
applications to prevent hallucination of unreadable text, in line
with FUTURE-AI ethical guidelines.

VII. CONCLUSION AND FUTURE WORK

We presented PageResUNet, a residual UNet-based pre-
processing model designed to improve OCR accuracy and
efficiency. Our findings demonstrate:

• A two-fold increase in OCR accuracy, from 0.41 to
0.82 mean similarity on degraded inputs.

• A 3–10× speedup by moving image restoration from
CPU-based classical filters to a GPU-accelerated single-
stage model.

Future work includes:
• Benchmark performance on real-world datasets such as

DIBCO and Tobacco-800, and extend to multilingual
OCR corpora.

• Conduct comprehensive ablation studies of architecture
variants and loss formulations using our checkpoint logs.



Figure 9. Distribution graphs for preprocessing methods and SSIM

• Integrate and compare GAN- and SR-based pipelines to
test against modern baselines.

• Perform statistical significance testing and energy profil-
ing to quantify efficiency and robustness.

By open-sourcing our complete pipeline and experimental
logs, we aim to promote reproducible research and foster
adoption of deep preprocessing in scalable OCR systems.
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